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A special purpose processor for Monte-Carlo simulation of the three-dimensional Ismg 
model is described. This device performs the Monte-Carlo updating algorithm on 25 million 
spins per second on a 64’ lattice. The device is also capable of measuring the energy and 
magnetization of the system or passing the updated lattice to a host computer. 

1. INTRODUCTION 

The Monte-Carlo method has prove to be an extremely valuable tool for the study 
of statistical mechanical systems and, more recently, for the study of euclidean 
quantum field theories [l-3]. However, when high accuracy is required or complex 
systems are studied, one is severely limited by the amount of computing time that is 
needed. Large amounts of computing time are necessary because the accuracy 
obtained in a Monte-Carlo study is proportional to l/p, where N is the number of 
iterations of the algorithm. For many computations that we wish to do, for example, 
non-abelian gauge theories on large lattices, the cost of performing the computation 
on a general purpose computer is prohibitive. Part of this problem arises from the 
nature of a general purpose machine: because it is designed to handle a large class of 
problems, it does not carry out a particular calculation with maximum efficiency. 

In this paper we describe a special purpose processor for performing Monte-Carlo 
simulation on a particular problem: the three-dimensional Ising model. Despite its 
modest cost, this machine is faster than the fastest supercomputers on the one 
particular problem for which it was designed. The architecture of this machine can be 
generalized to Monte-Carlo simulation of other models or to other problems 
involving iterative algorithms on quantities defined on lattices, such as solutions to 
partial differential equations. 

We begin by reviewing the Monte-Carlo algorithm for the Ising model, with 
emphasis on how the computation is done. We then describe the special purpose 
machine which carries out this algorithm. 
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2. THE MONTE-CARLO ALGORITHM 

The Hamiltonian for the Ising model considered here is 

H=-J \‘ S,Si-h:S,. 
(77, I 

(1) 

where the spins are arranged on a cubic lattice and take the values f 1, and the first 
sum in (1) is over all pairs of nearest neighbors. We are interested in computing 
expectation values of operators such as the magnetization and correlation functions. 
These expectation values are defined by 

where by a configuration we mean a given value (+I) for every spin in the system. 
The physical meaning of (2) is that the probability for the system to be in any 
configuration is proportional to exp(-H(configuration)/kT), and the expectation 
value of an operator is the average of this operator over all configurations, weighted 
by the probability of each configuration. The idea of Monte-Carlo simulation is to 
construct a computer model of the system of interest, and carry out a stochastic 
algorithm which is designed to produce configurations of the model system with the 
above probability. Physical quantities are measured by averaging over this set of con- 
figurations. 

The basic step of one such algorithm is to consider one particular spin, look up the 
current values of its six nearest neighbors, and set the spin under consideration to +l 
with probability 

p=e (Jrp~,S,th,lkT/(e’J~f ,S,th)/k7 + e-‘J’: ,S,+h)/kT). 
(3) 

or to -1 with probability 1 -p. This is done for every spin in the system, always 
using the updated values for the neighboring spins. This sweep is then repeated many 
times. It can be shown that this will produce a sample that will approach the correct 
equilibrium distribution. Monte-Carlo simulation consists of repeating this algorithm, 
stopping at intervals to measure the quantities of interest. The results of many 
measurements are averaged together to give an estimate of the expectation values of 
the operators. 

For J/kT close to the critical value at which the phase transition occurs 
configurations of the model change very slowly, so it is best to make many sweeps 
through the lattice with the updating algorithm between measurements of the quan- 
tities of interest. For example, at /I = 0.22 12, where /I, = 0.2217, the relaxation time 
of a 643 lattice is about 1700 Monte-Carlo sweeps through the lattice. This means 
that the great bulk of the computational effort consists of repeating the simple 
updating algorithm for all the spins in the lattice. Therefore it is attractive to 
construct a special purpose device to perform the updatings and make some of the 
simplest measurements. 
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3. DESIGN OF AN ISING MODEL PROCESSOR 

The first step in performing the updating algorithm for an Ising spin is to look up 
the current values of the neighboring spins. On a general purpose computer this 
requires a number of address computations and memory accesses. In fact, for the 
Ising model, a large fraction of the computer’s time is devoted to finding the needed 
data. Our approach to this problem is to buiId a special memory which automatically 
presents the correct data to the processor. Here we are taking advantage of the fact 
that we know infinitely far ahead what data will be needed, and in what order they 
will be needed. As we move to the right along a row of the lattice updating spins. the 
spins needed at each step are just one step to the right of those spins needed at the 
previous step. Thus we need to exarnine’six locations in memory. which are arranged 
in a rigid pattern that moves through the lattice. 

For a simplified conceptual version of the memory, imagine that the spins are 
stored in a one-dimensional cyclic shift register, as illustrated in Fig. 1. The outputs 
of the six bits of this shift register corresponding to the nearest neighbors of the spin 
to be updated are connected to the processor by wires. After the processor computes 
an updated spin and inserts it into the shift register, the shift register is clocked and 
every bit moves one step counterclockwise. The nearest neighbors of the next spin to 
be updated are then in position. 

By slightly skewing the simple periodic boundary conditions as shown in Fig. 2, we 
avoid having to make special provisions for spins at the edge of the lattice. Because 
we are interested in the properties of the system in the thermodynamic, or in~nite 
volume, limit, this minor change in the boundary conditions is of no consequence to 
the physics. (In fact, the use of skewed periodic boundary conditions is common 
practice in Monte-Carlo simulation.) 

Of course the reader has noticed that a number of processors could be placed 
around the ring in Fig. 1, thus increasing the speed of the simulation. The device we 
have built uses only one processor. However, because this processor is much faster 
than the components used in the shift register, we multiplex the processor among 

FIG. 1, Conceptual design of a Monte-Carlo processor. 
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FIG. 2. Skewed boundary conditions in two dimensions. The right-hand neighbor of spin 3 is spin 4. 
rather than spin 0 as is in ordinary periodic boundary conditions. 

sixteen different places in the lattice. The best way to visualize this is to imagine the 
(one dimensional) lattice folded back on itself as shown in Fig. 3. The shift register or 
first-in first-out memory (FIFO) is now 16 bits wide, with six multiplexed taps, and a 
permutation of the connecting wires at some point. Because large and fairly fast 
RAMS are readily available, we actually implement the segments of the shift register 
by attaching a reseting counter to the address inputs of a RAM. To clock this FIFO, 
we write the input into the RAM, increment the counter, then read from the RAM to 
the output of the segment. When the counter overflows, it is automatically reset to the 
two’s complement of the length of the FIFO. 

Multiplexing the processor among different locations in the lattice also allows us to 
design a faster processor. If the processor were used in only one location, as in Fig. 1, 
it would be necessary to complete the processing of each spin before beginning the 

FIG. 3. A single processor multiplexed among several points m the latttce. 
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FIG. 4. A processor for updating the Ising model. 

next, because the next spin requires the updated current spin as input. However, with 
multiplexing, we do not need the result of the current computation until 15 spins from 
distant parts of the lattice have been computed. This allows us to pipeline the 
processor. This means that the processor is divided into stages corresponding to the 
stages in the computation of an updated spin. When the first stage of the processor 
has completed its work on one spin, the result is passed on to the next stage. The first 
stage then begins working on the next stage. 

The processor for the Ising model is quite simple. Conceptually it is a black box 

NEIGHBORING SPINS 

ADDRUS 

RAM 

24 

I 
LATCH 3 

LATCH 4 3 
IO 

SECOND COMPARE 

FIG. 5. Block diagram of the processor. 
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with six input bits and one output bit as shown in Fig. 4. The six neighboring spins. 
represented by zeros or ones, are used to index a table of probabilities for the 
resulting spin to be up (Eq. (3)). Because a small amount of decoding of the input is 
necessary, this accounts for only two steps in the pipeline. The appropriate 
probability is compared to a pseudorandom number between zero and one, and the 
results of this comparison is the new value of the spin. This comparison requires 
another two steps in the pipeline. A block diagram of the processor is illustrated in 
Fig. 5. 

The pseudorandom number is generated by a separate circuit working in parallel 
with the processor. The algorithm used is one of the feedback shift register type or 
FSR 14, 5 1. The generator we use consists of a 127 bit shift register with feedback on 
the input of the first bit. If we denote by x,, II = 0. I,..., 126, the nth bit of the 
sequence, the FSR algorithm we use is 

x,= k-1?7+Xn-whll”dZ~ (4) 

The period of this bit sequence is exactly 2”’ - 1 161. 
To generate 24 bit random numbers from this 127 bit sequence we choose 24 bits 

out of the 127 at intervals of 24 clock pulses. The circuit we employ for this 
algorithm is illustrated in Fig. 6. It is arranged so that 24 bits in the sequence are 
generated each clock cycle. 

Originally the processor was designed and constructed with a different random 
number generator. This generator was based on a linear congruence algorithm 18 1, 
but when tests were performed it was discovered that there were very small but none 

FEEDBACK 
CONNECTIONS 

CLOCK 

FIG. 6. Block diagram of the pseudorandom number generator. The feedback connectlons (not 
shown) to bit n in the first latch are from bits n + 127 - 24 and n + 97 - 24. 
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the less significant discrepancies with known results. Then will be detailed later in the 
paper but it points out the importance of a good random number generator for doing 
high statistics Monte-Carlo simulations. 

The speed at which this processor can run is limited by the slowest step in the 
pipeline, which turns out to be looking up the probabilities in the table memory. To 
store this table we use small but fast RAM chips with an access time of 20 nsec. In 
addition the latches have a typical propagation delay of 5.5 nsec. and a setup time of 
2 nsec. Adding a little for wires and variations in components the processor has a 
cycle time of 40 nsec which means we can update 25 million spins per second. 

In addition to the Monte-Carlo updating circuitry. we have included circuitry for 
measuring the magnetization and energy of the system. To measure other quantities 
of interest we must send the sample systems to a computer for analysis. In our case 
the computer is a VAX-l l/780. In order to match the data rate of the VAX interface 
we must slow our processor to around 10 million spins per second when we are 
copying the spins into the VAX. Because we make many updating sweeps between 
each measurement in order to get a reasonably independent sample, this does not 
amount to a serious loss in speed. 

Obviously this is a special purpose computing device designed to solve only one 
problem efficiently. We are able to adjust the size of the lattice by changing the size 
of the FIFO segments (adjustable by switches). Also, by changing the probabilities in 
the processor table, we can vary the coupling (an obvious necessity), or include 
anisotropic couplings, or include a magnetic field. 

In order to demonstrate that the processor was correctly built and that there were 
no flaws in the algorithm, the processor was run against a full scale simulation in 
software and was compared against exactly known properties in two and three 
dimensions. Initially, as mentioned above, there were some troubling discrepancies. 
Specifically the average magnetization in the high temperature phase and at zero 
magnetic field of the Ising model is strictly zero. However, the results of long runs 
with different addends in the original linear congruence random number generator 
produced magnetizations as large as 0.01 which were reproducible for different 
random number seeds. As a result the random number generator was redesigned as 
described above. When the tests were redone the results were consistent with zero. 

It is possible to use the processor to simulate the two-dimensional Ising model by 
the simple technique of setting the coupling strength in the x direction to zero. In this 

TABLE I 

0.432 0.662896 zt 0.000060 0.662846 
0.436 0.68465 1 i 0.000075 0.684739 
0.440 0.708114 f 0.000067 0.70806 1 
0.444 0.729694 f 0.000059 0.729709 
0.448 0.748260 zk 0.000048 0.748278 
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FIG. 7. Block diagram of the complete device. 

case the three-dimensional lattice appears as 64 independent two-dimensional lattices 
which are all being updated simultaneously by the processor. When we compare 
results with the exactly known values of the energy for this case we obtain the results 
of Table I. These results represent a total of 64,000,OOO sweeps of 64 by 64 lattices 
per data point. The energy was measured every 100 sweeps on each of the 64 lattices. 
Errors were estimated by computing the standard deviation of the mean of the data 
partitioned into 100 blocks. Each block is sufficiently large to preclude any 
correlations. The results are completely consistent with the exact solution 19 1. 

The device described here is now in full operation at Santa Barbara (see Fig. 7). 
Some of the initial results from our processor are displayed in Fig. 8, where we have 
plotted the specific heat, the susceptibility, and the magnetization of the system. The 
expected behavior near the phase transition can be seen in any one of these plots. 
Another processor for the Ising model has been built at the University of Technology 
in Delft [7]. 

It should be clear that the ideas described here can easily be extended to .Monte- 
Carlo studies of other models, perhaps even including Euclidean lattice gauge 
theories, or to other problems involving iterative algorithms on lattices. Examples 
include relaxation methods for elliptic partial differential equations. numerical 

J/KT J/KT J/KT 

FIG. 8. Plots of the magnetization. suscepttbility. and specific heat versus J/kT. 
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integration of the Navier-Stokes equation, or simulation of time-dependent 
phenomena using the Langevin equation. 
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